Dynamic Clustering to Minimize the Sum of Radii

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic Clustering to Minimize the Sum of Radii

In this paper, we study the problem of opening centers to cluster a set of clients in a metric space so as to minimize the sum of the costs of the centers and of the cluster radii, in a dynamic environment where clients arrive and depart, and the solution must be updated efficiently while remaining competitive with respect to the current optimal solution. We call this dynamic sumof-radii cluste...

متن کامل

Dynamic Sum-Radii Clustering

Real networks have in common that they evolve over time and their dynamics have a huge impact on their structure. Clustering is an efficient tool to reduce the complexity to allow representation of the data. In 2014, Eisenstat et al. introduced a dynamic version of this classic problem where the distances evolve with time and where coherence over time is enforced by introducing a cost for clien...

متن کامل

Online Sum-Radii Clustering

In Online Sum-Radii Clustering, n demand points arrive online and must be irrevocably assigned to a cluster upon arrival. The cost of each cluster is the sum of a fixed opening cost and its radius, and the objective is to minimize the total cost of the clusters opened by the algorithm. We show that the deterministic competitive ratio of Online Sum-Radii Clustering for general metric spaces is Θ...

متن کامل

Geometric Clustering to Minimize the Sum of Cluster Sizes

We study geometric versions of the min-size k-clustering problem, a clustering problem which generalizes clustering to minimize the sum of cluster radii and has important applications. We prove that the problem can be solved in polynomial time when the points to be clustered are located on a line. For Euclidean spaces of higher dimensions, we show that the problem is NP-hard and present polynom...

متن کامل

Approximation Algorithms for Clustering to Minimize the Sum of Diameters

We consider the problem of partitioning the nodes of a complete edge weighted graph into k clusters so as to minimize the sum of the diameters of the clusters. Since the problem is NP-complete, our focus is on the development of good approximation algorithms. When edge weights satisfy the triangle inequality, we present the rst approximation algorithm for the problem. The approximation algorith...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Algorithmica

سال: 2020

ISSN: 0178-4617,1432-0541

DOI: 10.1007/s00453-020-00721-7