Dynamic Clustering to Minimize the Sum of Radii
نویسندگان
چکیده
منابع مشابه
Dynamic Clustering to Minimize the Sum of Radii
In this paper, we study the problem of opening centers to cluster a set of clients in a metric space so as to minimize the sum of the costs of the centers and of the cluster radii, in a dynamic environment where clients arrive and depart, and the solution must be updated efficiently while remaining competitive with respect to the current optimal solution. We call this dynamic sumof-radii cluste...
متن کاملDynamic Sum-Radii Clustering
Real networks have in common that they evolve over time and their dynamics have a huge impact on their structure. Clustering is an efficient tool to reduce the complexity to allow representation of the data. In 2014, Eisenstat et al. introduced a dynamic version of this classic problem where the distances evolve with time and where coherence over time is enforced by introducing a cost for clien...
متن کاملOnline Sum-Radii Clustering
In Online Sum-Radii Clustering, n demand points arrive online and must be irrevocably assigned to a cluster upon arrival. The cost of each cluster is the sum of a fixed opening cost and its radius, and the objective is to minimize the total cost of the clusters opened by the algorithm. We show that the deterministic competitive ratio of Online Sum-Radii Clustering for general metric spaces is Θ...
متن کاملGeometric Clustering to Minimize the Sum of Cluster Sizes
We study geometric versions of the min-size k-clustering problem, a clustering problem which generalizes clustering to minimize the sum of cluster radii and has important applications. We prove that the problem can be solved in polynomial time when the points to be clustered are located on a line. For Euclidean spaces of higher dimensions, we show that the problem is NP-hard and present polynom...
متن کاملApproximation Algorithms for Clustering to Minimize the Sum of Diameters
We consider the problem of partitioning the nodes of a complete edge weighted graph into k clusters so as to minimize the sum of the diameters of the clusters. Since the problem is NP-complete, our focus is on the development of good approximation algorithms. When edge weights satisfy the triangle inequality, we present the rst approximation algorithm for the problem. The approximation algorith...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Algorithmica
سال: 2020
ISSN: 0178-4617,1432-0541
DOI: 10.1007/s00453-020-00721-7